http总结

2020/04/13

我的http整理

1 基础概念

  • 1.HTTP协议,即超文本传输协议(Hypertext transfer protocol)。是一种详细规定了浏览器和万维网(WWW = World Wide Web)服务器之间互相通信的规则,通过因特网传送万维网文档的数据传送协议。
  • 2.HTTP协议作为TCP/IP模型中应用层的协议也不例外。HTTP协议通常承载于TCP协议之上,有时也承载于TLS或SSL协议层之上,这个时候,就成了我们常说的HTTPS。如下图:
  • 3.HTTP是一个应用层协议,由请求和响应构成,是一个标准的客户端服务器模型。HTTP是一个无状态的协议。
  • 4.HTTP默认的端口号为80,HTTPS的端口号为443
  • 5.浏览网页是HTTP的主要应用,但是这并不代表HTTP就只能应用于网页的浏览。HTTP是一种协议,只要通信的双方都遵守这个协议,HTTP就能有用武之地。比如咱们常用的QQ,迅雷这些软件,都会使用HTTP协议(还包括其他的协议)。

2 工作原理

HTTP协议定义Web客户端如何从Web服务器请求Web页面,以及服务器如何把Web页面传送给客户端。HTTP协议采用了请求/响应模型的协议。客户端向服务器发送一个请求报文,请求报文包含请求的方法URL协议版本请求头部和请求数据。服务器以一个状态行作为响应,响应的内容包括协议的版本、成功或者错误代码、服务器信息、响应头部和响应数据。

以下是 HTTP 请求/响应的步骤:

  • 1、客户端连接到Web服务器 一个HTTP客户端,通常是浏览器,与Web服务器的HTTP端口(默认为80)建立一个TCP套接字连接。例如,shenxiaozi007.github.io。
  • 2、发送HTTP请求 通过TCP套接字,客户端向Web服务器发送一个文本的请求报文,一个请求报文由请求行、请求头部、空行和请求数据4部分组成。
  • 3、服务器接受请求并返回HTTP响应 Web服务器解析请求,定位请求资源。服务器将资源复本写到TCP套接字,由客户端读取。一个响应由状态行、响应头部、空行和响应数据4部分组成。
  • 4、释放连接TCP连接 若connection 模式为close,则服务器主动关闭TCP连接,客户端被动关闭连接,释放TCP连接;若connection 模式为keepalive,则该连接会保持一段时间,在该时间内可以继续接收请求;
  • 5、客户端浏览器解析HTML内容 客户端浏览器首先解析状态行,查看表明请求是否成功的状态代码。然后解析每一个响应头,响应头告知以下为若干字节的HTML文档和文档的字符集。客户端浏览器读取响应数据HTML,根据HTML的语法对其进行格式化,并在浏览器窗口中显示。

3 请求和响应报文

3.1 请求报文

客户端发送一个HTTP请求到服务器的请求消息包括以下格式:

请求行请求头空行请求体四个部分组成。

  • 请求体结构 图片
  • 第一部分:请求行,用来说明请求类型,要访问的资源以及所使用的HTTP版本. GET说明请求类型为GET,/doc/test.html为要访问的资源,该行的最后一部分说明使用的是HTTP1.1版本。
  • 第二部分:请求头,紧接着请求行(即第一行)之后的部分,用来说明服务器要使用的附加信息 从第二行起为请求头部,HOST将指出请求的目的地. User-Agent,服务器端和客户端脚本都能访问它,它是浏览器类型检测逻辑的重要基础.该信息由你的浏览器来定义,并且在每个请求中自动发送等等
  • 第三部分:空行,请求头部后面的空行是必须的 即使第四部分的请求数据为空,也必须有空行。
  • 第四部分:请求数据也叫请求体,可以添加任意的其他数据。

3.2 响应报文

一般情况下,服务器接收并处理客户端发过来的请求后会返回一个HTTP的响应消息。

HTTP响应也由四个部分组成,分别是:响应行响应头空行响应体

图片

  • 第一部分:响应行,由HTTP协议版本号, 状态码, 状态消息 三部分组成。 第一行为状态行,(HTTP/1.1)表明HTTP版本为1.1版本,状态码为200,状态消息为(ok)
  • 第二部分:响应头,用来说明客户端要使用的一些附加信息 第二行和第三行和第四行为消息报头, Date:生成响应的日期和时间;Content-Type:指定了MIME类型的HTML(text/html),编码类型是ISO-8859-1
  • 第三部分:空行,消息报头后面的空行是必须的
  • 第四部分:响应体,服务器返回给客户端的文本信息。 空行后面的html部分为响应正文。

4 HTTP方法

4.1 常用方法

  • GET(SELECT):从服务器取出资源(一项或多项), 当前网络请求中,绝大部分使用的是 GET 方法。

  • POST(CREATE):在服务器新建一个资源, POST 主要用来传输数据,而 GET 主要用来获取资源。。

  • PUT(UPDATE):在服务器更新资源(客户端提供改变后的完整资源)。

  • PATCH(UPDATE):在服务器更新资源(客户端提供改变的属性), PATCH 允许部分修改。

  • DELETE(DELETE):从服务器删除资源。

4.2 典型RESTful API例子

5 HTTP 状态码

服务器返回的响应报文中第一行为状态行,包含了状态码以及原因短语,用来告知客户端请求的结果。

状态码 类别 含义
1XX Informational(信息性状态码) 接收的请求正在处理
2XX Success(成功状态码) 请求正常处理完毕
3XX Redirection(重定向状态码) 需要进行附加操作以完成请求
4XX Client Error(客户端错误状态码) 服务器无法处理请求
5XX Server Error(服务器错误状态码) 服务器处理请求出错

5.1 (1XX)信息状态码

  • 100 Continue :表明到目前为止都很正常,客户端可以继续发送请求或者忽略这个响应。

5.2 (2XX)成功状态码

  • 200 OK :请求成功
  • 204 No Content :请求已经成功处理,但是返回的响应报文不包含实体的主体部分。一般在只需要从客户端往服务器发送信息,而不需要返回数据时使用。
  • 206 Partial Content :表示客户端进行了范围请求,响应报文包含由 Content-Range 指定范围的实体内容。

5.3 (3XX)重定向状态码

  • 301 Permanently Moved :永久性重定向
  • 302 Temporarily Moved :临时性重定向
  • 303 See Other :和 302 有着相同的功能,但是 303 明确要求客户端应该采用 GET 方法获取资源。
    • 注:虽然 HTTP 协议规定 301、302 状态下重定向时不允许把 POST 方法改成 GET 方法,但是大多数浏览器都会在 301、302 和 303 状态下的重定向把 POST 方法改成 GET 方法。
  • 304 Not Modified :如果请求报文首部包含一些条件,例如:If-Match,If-Modified-Since,If-None-Match,If-Range,If-Unmodified-Since,如果不满足条件,则服务器会返回 304 状态码。
  • 307 Temporary Redirect :临时重定向,与 302 的含义类似,但是 307 要求浏览器不会把重定向请求的 POST 方法改成 GET 方法

5.4 (4XX)客户端错误状态码

  • 400 Bad Request :请求报文中存在语法错误。
  • 401 Unauthorized :该状态码表示发送的请求需要有认证信息(BASIC 认证、DIGEST 认证)。如果之前已进行过一次请求,则表示用户认证失败。
  • 403 Forbidden :请求被拒绝。
  • 404 Not Found :页面不存在。

5.5 (5XX)服务器错误状态码

  • 500 Internal Server Error :服务器正在执行请求时发生错误。
  • 503 Service Unavailable :服务器暂时处于超负载或正在进行停机维护,现在无法处理请求。

6 HTTP消息报头

消息报头分为通用报头、请求报头、响应报头、实体报头等。消息报头由键值对组成,每行一对,关键字和值用英文冒号“:”分隔。

6.1 通用报头

它既可以出现在请求报头,也可以出现在响应报头中,如下所示:

  • Date:表示消息产生的日期和时间。
  • Connection:允许发送指定连接的选项。例如指定连接是连续的;或者指定“close”选项,通知服务 器,在响应完成后,关闭连接。
  • Cache-Control:用于指定缓存指令,缓存指令是单向的(响应中出现的缓存指令在请求中未必会出现),且是独立的(一个消息的缓存指令不会影响另一个消息处理的缓存机制)。

6.2 请求报头

在请求行之后会有0个或者多个请求报头,请求报头通知服务器关于客户端请求的信息。典型的请求报头如下所示:

  • Host:请求的主机名,允许多个域名同处一个IP地址,即虚拟主机。

  • User-Agent:发送请求的浏览器类型、操作系统等信息。

  • Accept:客户端可识别的内容类型列表,用于指定客户端接收哪些类型的信息。

  • Accept-Charset:请求报头域用于指定客户端接受的字符集 。

  • Accept-Encoding:客户端可识别的数据编码。

  • Accept-Language:表示浏览器所支持的语言类型。

  • Authorization:请求报头域主要用于证明客户端有权查看某个资源。

  • Connection:允许客户端和服务器指定与请求/响应连接有关的选项。例如,这时为Keep-Alive则表示 保持连接。

  • Transfer-Encoding:告知接收端为了保证报文的可靠传输,对报文采用了什么编码方式。

6.3 响应报头

用于服务器传递自身信息的响应。常见的响应报头如下所示:

  • Location:用于重定向接收者到一个新的位置,常用在更换域名的时候。

  • Server:包含服务器用来处理请求的系统信息,与User-Agent请求报头是相对应的。

6.4 实体报头

实体报头用来定义被传送资源的信息,其既可用于请求也可用于响应。请求和响应消息都可以传送一 个实体。常见的实体报头如下所示:

  • Content-Type:发送给接收者的实体正文的媒体类型。

  • Content-Lenght:实体正文的长度。

  • Content-Language:描述资源所用的自然语言。

  • Content-Encoding:实体报头被用作媒体类型的修饰符。它的值指示了已经被应用到实体正文的附加 内容的编码,因而要获得Content-Type报头域中所引用的媒体类型,必须采用相应的解码机制。

  • Last-Modified:实体报头用于指示资源的最后修改日期和时间。

  • Expires:实体报头给出响应过期的日期和时间。

7 具体应用

7.1 链接管理

图片

7.1.1 短连接与长连接

当浏览器访问一个包含多张图片的 HTML 页面时,除了请求访问的 HTML 页面资源,还会请求图片资源。如果每进行一次 HTTP 通信就要新建一个 TCP 连接,那么开销会很大。 长连接只需要建立一次 TCP 连接就能进行多次 HTTP 通信。

  • 从 HTTP/1.1 开始默认是长连接的,如果要断开连接,需要由客户端或者服务器端提出断开,使用 Connection : close
  • 在 HTTP/1.1 之前默认是短连接的,如果需要使用长连接,则使用 Connection : Keep-Alive

7.1.1 流水线

默认情况下,HTTP 请求是按顺序发出的,下一个请求只有在当前请求收到响应之后才会被发出。由于受到网络延迟和带宽的限制,在下一个请求被发送到服务器之前,可能需要等待很长时间

流水线是在同一条长连接上连续发出请求,而不用等待响应返回,这样可以减少延迟。

HTTP 协议是无状态的,主要是为了让 HTTP 协议尽可能简单,使得它能够处理大量事务。HTTP/1.1 引入Cookie 来保存状态信息。

Cookie 是服务器发送到用户浏览器并保存在本地的一小块数据,它会在浏览器之后向同一服务器再次发起请求时被携带上,用于告知服务端两个请求是否来自同一浏览器。由于之后每次请求都会需要携带 Cookie 数据,因此会带来额外的性能开销(尤其是在移动环境下)。

Cookie 曾一度用于客户端数据的存储,因为当时并没有其它合适的存储办法而作为唯一的存储手段,但现在随着现代浏览器开始支持各种各样的存储方式,Cookie 渐渐被淘汰。新的浏览器 API 已经允许开发者直接将数据存储到本地,如使用Web storage API(本地存储和会话存储)或 IndexedDB

7.2.1 用途

  • 会话状态管理(如用户登录状态、购物车、游戏分数或其它需要记录的信息)
  • 个性化设置(如用户自定义设置、主题等)
  • 浏览器行为跟踪(如跟踪分析用户行为等)

7.2.2 创建过程

服务器发送的响应报文包含 Set-Cookie 首部字段,客户端得到响应报文后把 Cookie 内容保存到浏览器中。

HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: yummy_cookie=choco
Set-Cookie: tasty_cookie=strawberry

[page content]

客户端之后对同一个服务器发送请求时,会从浏览器中取出 Cookie 信息并通过 Cookie 请求首部字段发送给服务器。

GET /sample_page.html HTTP/1.1
Host: www.example.org
Cookie: yummy_cookie=choco; tasty_cookie=strawberry

7.2.3 分类

  • 会话期 Cookie:浏览器关闭之后它会被自动删除,也就是说它仅在会话期内有效。
  • 持久性 Cookie:指定过期时间(Expires)或有效期(max-age)之后就成为了持久性的 Cookie。
Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT;

7.2.4 作用域

Domain 标识指定了哪些主机可以接受 Cookie。如果不指定,默认为当前文档的主机(不包含子域名)。如果指定了 Domain,则一般包含子域名。例如,如果设置 Domain=mozilla.org,则 Cookie 也包含在子域名中(如 developer.mozilla.org)。

Path 标识指定了主机下的哪些路径可以接受 Cookie(该 URL 路径必须存在于请求 URL 中)。以字符 %x2F (“/”) 作为路径分隔符,子路径也会被匹配。例如,设置 Path=/docs,则以下地址都会匹配:

7.2.5 JavaScript

浏览器通过 document.cookie 属性可创建新的 Cookie,也可通过该属性访问非 HttpOnly 标记的 Cookie。

document.cookie = "yummy_cookie=choco";
document.cookie = "tasty_cookie=strawberry";
console.log(document.cookie);

7.2.6 HttpOnly

标记为 HttpOnly 的 Cookie 不能被 JavaScript 脚本调用。跨站脚本攻击 (XSS) 常常使用 JavaScript 的 document.cookie API 窃取用户的 Cookie 信息,因此使用 HttpOnly 标记可以在一定程度上避免 XSS 攻击。

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure; HttpOnly

7.2.7 Secure

标记为 Secure 的 Cookie 只能通过被 HTTPS 协议加密过的请求发送给服务端。但即便设置了 Secure 标记,敏感信息也不应该通过 Cookie 传输,因为 Cookie 有其固有的不安全性,Secure 标记也无法提供确实的安全保障。

7.2.8 Session

除了可以将用户信息通过 Cookie 存储在用户浏览器中,也可以利用 Session 存储在服务器端,存储在服务器端的信息更加安全。

Session 可以存储在服务器上的文件、数据库或者内存中。也可以将 Session 存储在 Redis 这种内存型数据库中,效率会更高。

使用 Session 维护用户登录状态的过程如下:

  • 用户进行登录时,用户提交包含用户名和密码的表单,放入 HTTP 请求报文中;
  • 服务器验证该用户名和密码,如果正确则把用户信息存储到 Redis 中,它在 Redis 中的 Key 称为 Session ID;
  • 服务器返回的响应报文的 Set-Cookie 首部字段包含了这个 Session ID,客户端收到响应报文之后将该 Cookie 值存入浏览器中;
  • 客户端之后对同一个服务器进行请求时会包含该 Cookie 值,服务器收到之后提取出 Session ID,从 Redis 中取出用户信息,继续之前的业务操作。

应该注意 Session ID 的安全性问题,不能让它被恶意攻击者轻易获取,那么就不能产生一个容易被猜到的 Session ID 值。此外,还需要经常重新生成 Session ID。在对安全性要求极高的场景下,例如转账等操作,除了使用 Session 管理用户状态之外,还需要对用户进行重新验证,比如重新输入密码,或者使用短信验证码等方式。

此时无法使用 Cookie 来保存用户信息,只能使用 Session。除此之外,不能再将 Session ID 存放到 Cookie 中,而是使用 URL 重写技术,将 Session ID 作为 URL 的参数进行传递。

  • Cookie 只能存储 ASCII 码字符串,而 Session 则可以存储任何类型的数据,因此在考虑数据复杂性时首选 Session;
  • Cookie 存储在浏览器中,容易被恶意查看。如果非要将一些隐私数据存在 Cookie 中,可以将 Cookie 值进行加密,然后在服务器进行解密;
  • 对于大型网站,如果用户所有的信息都存储在 Session 中,那么开销是非常大的,因此不建议将所有的用户信息都存储到 Session 中。

8 HTTPS

HTTP 有以下安全性问题:

  • 使用明文进行通信,内容可能会被窃听;
  • 不验证通信方的身份,通信方的身份有可能遭遇伪装;
  • 无法证明报文的完整性,报文有可能遭篡改。

HTTPS 并不是新协议,而是让 HTTP 先和 SSL(Secure Sockets Layer)通信,再由 SSL 和 TCP 通信,也就是说 HTTPS 使用了隧道进行通信。

通过使用 SSL,HTTPS 具有了加密(防窃听)、认证(防伪装)和完整性保护(防篡改)。

图片

8.1 加密

8.1.1 对称秘钥加密

对称密钥加密(Symmetric-Key Encryption),加密和解密使用同一密钥。

  • 优点:运算速度快;
  • 缺点:无法安全地将密钥传输给通信方。

图片

8.1.2 非对称密钥加密

非对称密钥加密,又称公开密钥加密(Public-Key Encryption),加密和解密使用不同的密钥。

公开密钥所有人都可以获得,通信发送方获得接收方的公开密钥之后,就可以使用公开密钥进行加密,接收方收到通信内容后使用私有密钥解密。

非对称密钥除了用来加密,还可以用来进行签名。因为私有密钥无法被其他人获取,因此通信发送方使用其私有密钥进行签名,通信接收方使用发送方的公开密钥对签名进行解密,就能判断这个签名是否正确。

  • 优点:可以更安全地将公开密钥传输给通信发送方;
  • 缺点:运算速度慢。

图片

8.1.3 HTTPS 采用的加密方式

上面提到对称密钥加密方式的传输效率更高,但是无法安全地将密钥 Secret Key 传输给通信方。而非对称密钥加密方式可以保证传输的安全性,因此我们可以利用非对称密钥加密方式将 Secret Key 传输给通信方。HTTPS 采用混合的加密机制,正是利用了上面提到的方案:

  • 使用非对称密钥加密方式,传输对称密钥加密方式所需要的 Secret Key,从而保证安全性;
  • 获取到 Secret Key 后,再使用对称密钥加密方式进行通信,从而保证效率。

获取 secrek key的过程

  1. 客户端向服务器发送请求,同时发送客户端支持的一套加密规则(包括对称加密、非对称加密、摘要算法);
  2. 服务器从中选出一组加密算法与HASH算法,并将自己的身份信息以证书的形式发回给浏览器。证书里面包含了网站地址加密公钥(用于非对称加密),以及证书的颁发机构等信息(证书中的私钥只能用于服务器端进行解密);
  3. 客户端验证服务器的合法性,包括:证书是否过期,CA是否可靠,发行者证书的公钥能否正确解开服务器证书的“发行者的数字签名”,服务器证书上的域名是否和服务器的实际域名相匹配;
  4. 如果证书受信任,或者用户接收了不受信任的证书,浏览器会生成一个随机密钥(用于对称算法),并用服务器提供的公钥加密(采用非对称算法对密钥加密);使用Hash算法对握手消息进行摘要计算,并对摘要使用之前产生的密钥加密(对称算法);将加密后的随机密钥和摘要一起发送给服务器;
  5. 服务器使用自己的私钥解密,得到对称加密的密钥,用这个密钥解密出Hash摘要值,并验证握手消息是否一致;如果一致,服务器使用对称加密的密钥加密握手消息发给浏览器;
  6. 浏览器解密并验证摘要,若一致,则握手结束。之后的数据传送都使用对称加密的密钥进行加密

图片

总结:非对称加密算法用于在握手过程中加密生成的密码;对称加密算法用于对真正传输的数据进行加密;HASH算法用于验证数据的完整性。

8.2 认证

通过使用 证书 来对通信方进行认证。

数字证书认证机构(CA,Certificate Authority)是客户端与服务器双方都可信赖的第三方机构。

服务器的运营人员向 CA 提出公开密钥的申请,CA 在判明提出申请者的身份之后,会对已申请的公开密钥做数字签名,然后分配这个已签名的公开密钥,并将该公开密钥放入公开密钥证书后绑定在一起。

进行 HTTPS 通信时,服务器会把证书发送给客户端。客户端取得其中的公开密钥之后,先使用数字签名进行验证,如果验证通过,就可以开始通信了。

图片

8.3 完整性保护

SSL 提供报文摘要功能来进行完整性保护。

HTTP 也提供了 MD5 报文摘要功能,但不是安全的。例如报文内容被篡改之后,同时重新计算 MD5 的值,通信接收方是无法意识到发生了篡改。

HTTPS 的报文摘要功能之所以安全,是因为它结合了加密认证这两个操作。试想一下,加密之后的报文,遭到篡改之后,也很难重新计算报文摘要,因为无法轻易获取明文。

8.4 https-的缺点

  • 因为需要进行加密解密等过程,因此速度会更慢;

  • 需要支付证书授权的高额费用。

Search

    Table of Contents